

Doc. Revision 17 29 Jul. 2010 Page 1 of 19

Author Todor Todorov

Who’s smalltalking to me?

Tracing Message Sends to an Object

Introduction
Many Smalltalk systems have existed for years, and in the case of VSE, the youngest

systems are probably at least 10 years old. Code evolves over the years and can become

complex and interconnected. Documentation gets lost or out-dated and out of sync.

People that had the knowledge about particular part of a system may not be working for

the company anymore. The system however is still running, but once in a while may

need a change or two – and the trouble starts.

I had the task to implement some changes in a VSE system designed by others;

Complex and interconnected system with many components, and documentation only at

the reference level. I needed to understand how a certain component works, but where

do I start? The usual method of taking senders of every single method would kill me.

And even if I survived, it would still not give me a picture of the lifetime of the object I

was interested in. Obviously, to understand more about the life and purpose of the

object, I needed to know, who is talking to that object, when and why.

The solution I chose was to implement a mechanism to trace message sends to the

object in interest.

This document describes the workings of a message send and a mechanism for

tracing message sends to an object.

Doc. Revision 17 29 Jul. 2010 Page 2 of 19

Who’s smalltalking to me?

Contents
Introduction ... 1

Messages and Message Sends ... 3

Definitions ... 3

VSE Objects ... 3

Object’s Class .. 4

Sending Messages .. 5

Super Sends .. 5

Instance Specific Behaviour ... 9

Generic Message Send Tracing .. 12

Message Send Tracing ... 12

Instance Specific Tracing ... 12

Hacking Instance Specific Super Sends ... 13

Trace Methods ... 14

Activating Tracing ... 16

Internals ... 17

Known Limitations .. 17

Conclusion.. 18

Mixins ... 18

Break Points .. 19

Proxy Objects / Generic Tracing ... 19

Doc. Revision 17 29 Jul. 2010 Page 3 of 19

Who’s smalltalking to me?

Messages and Message Sends
This chapter is a general description of the Smalltalk and VSE concepts of object,

message and message send.

Definitions
I don’t need to write much here, people already know what they are, but anyway.

- Object: language mechanism for binding data with methods that operate on that

data.

- Method: concrete implementation of some logic. VSE uses instances of the class

CompiledMethod to store this logic.

- Message: an object, method name (selector) and optionally, arguments passed

to the method together with the object.

- Message Send: an invocation (perform) of a message.

VSE Objects
This section contains the description of a VSE object. Other dialects may have chosen

another approach to implement an object.

An object is a data structure in the computer memory, which the virtual machine (VM)

treats in a special way. Typical VSE object could have the following memory

representation:

Inst.Var.3Inst.Var.2Inst.Var.1TypeFlags

Object Header Object Body

Memory addressLower Higher

Object Pointer

The object consists of two portions, the object header and the object body. The object

header is only visible to the VM, and invisible to Smalltalk. There are however ways to

manipulate it. It may be compact, as shown above or extended, for large objects. The

flags field contains the size of the object, bit-flags about the type of the object and the

hash of the object. The header also contains information about the type of the object,

i.e. about the object class and methods available on this object; more on this in a

moment. The object body is optional, and for objects that contain information, it has

references to other objects (the illustration has 3 references) or for binary objects, it

directly contains the data.

The most obvious would be for the object to have reference (stored in the header) to the

class object it is an instance of. The class has a list of methods available to that object.

For performance, this is not the case. Most often, the object behaviour is more

interesting than its class. In other words, the list of methods available for an object is

more important. This is because every message sends needs to resolve to actual method

implementations. The illustration on the next page shows the memory layout for an

RGBColor object. The key elements are:

- Method dictionary array. This array describes the behaviour of the object. It is

referenced directly from the object’s header. It is not a special object, but just a

regular Array object. It contains MethodDictionary objects. The size of the

method dictionary array corresponds to the depth of the object’s class hierarchy,

Doc. Revision 17 29 Jul. 2010 Page 4 of 19

Who’s smalltalking to me?

i.e. 3 levels for RGBColor. The method dictionary array is shared between

objects of a same class.

- Method dictionary. Method dictionaries are instances of MethodDictionary.

Those are identity dictionaries, accepting only symbols as keys and compiled

methods as values. Except this, they also have a special instance variable named

class. This is instrumental for finding the class of an object.

- Compiled methods. Those contain the logic.

- Class. Describes the object, but also holds a reference to the method dictionary

array, which is used when new objects are instantiated. The methods

implemented by the class, as we see them in the development tools are hold in

the first method dictionary in the method dictionary array.

Below is a diagram of a VSE RGBColor object and the objects referenced by it. The

diagram is slightly simplified for clarity.

....

bluegreenredMDAFlags

Object Header Object Body

isRGBColor

Color>>asRGBColor

321

asRGBColor

red

printOn: asRGBColor

isColor

isColor

isRGBColor

printOn:

isNil

....

....

RGBColor>>isRGBColor

RGBColor>>printOn:

RGBColor>>red

RGBColor>>asRGBColor

Color>>isColor

Object>>isColor

Object>>isNil

Object>>isRGBColor

Object>>printOn:

RGBColor MD Color MD

Object MD

RGBColor Method Dicrionary Array

CompiledMethod

MethodDictionary

(Method Dict.) Array

Illustration Colors

Object

Color

RGBColor class

class

class

Class

More about the details of a VSE object’s memory layout can be found in

\SAMPLE\USERPRIM\ examples in the VSE installation directory.

Object’s Class
Sends to #class, for example self class end in a primitive in the VM. Since the object

has no direct reference to its class, the VM has to find the class trough the method

dictionary array and the first method dictionary in the array. The illustration below

shows how the class for an object is retrieved.

....

bluegreenredFlags MDA

Object Header Object Body

321

asRGBColor

....

....

RGBColor>>asRGBColor

RGBColor MD Color MD

Object MD

RGBColor Method Dicrionary Array

CompiledMethod

MethodDictionary

(Method Dict.) Array

Illustration Colors

Object

Color

RGBColor class

class

class

Class

Doc. Revision 17 29 Jul. 2010 Page 5 of 19

Who’s smalltalking to me?

Sending Messages
When a message is sent, the message only contains the selector for the method to be

executed. The VM needs to find the compiled method that implements the logic for the

requested selector for the given receiver. Let’s say we have an RGBColor, and we send

it #isColor. The illustration below shows the search process.

....

Object Header Object Body

isRGBColor

Color>>asRGBColor

31 2

asRGBColor

red

printOn: asRGBColor

isColor

isRGBColor

printOn:

isNil

....

....

RGBColor>>isRGBColor

RGBColor>>printOn:

RGBColor>>red

RGBColor>>asRGBColor

Color>>isColor

Object>>isColor

Object>>isNil

Object>>isRGBColor

Object>>printOn:

RGBColor MD Color MD

Object MD

RGBColor Method Dicrionary Array

CompiledMethod

MethodDictionary

(Method Dict.) Array

Illustration Colors

Object

Color

RGBColor class

class

class

Class

bluegreenredFlags MDA

isColor

1

2

3

4

1. Use the RGBColor object’s header to find the method dictionary array for the

RGBColor object.

2. Look in the first method dictionary in the array. This dictionary contains all the

methods defined directly on the RGBColor class. In our example, no

implementation is found for the #isColor method in this dictionary.

3. Look in the second dictionary in the array. This dictionary contains all the

methods defined directly on the Color class. In the example, we find #isColor

method in this dictionary.

4. Get the compiled method object for #isColor defined on the Color class.

Once found, it can be executed with the RGBColor object as self. Also, the compiled

method is cached in an inline cache, so subsequent message sends will not have to look

for it.

If the VM can’t find implementation for the #isColor method in any of the method

dictionaries in the method dictionary array, it creates a Message object with self as the

receiver, #isColor as the selector, and in this case no arguments. It then performs the

same lookup for the #doesNotUnderstand: method and executes the method with the

message object as parameter. If it can’t find the #doesNotUnderstand: method in any of

the method dictionaries, the VM displays a message box to the user and crashes.

The #vmInterrupt: method is another key method that must be present. The VM

crashes in similar way, if it is missing.

Super Sends
Slightly more complicated is when a method is sent to super instead of self. Let’s look

at an example. We’ll define 3 subclasses of Object. Some “pseudo code” below:

Object subclass: #Subclass1.

Subclass1 subclass: #Subclass2.

Subclass2 subclass: #Subclass3.

Doc. Revision 17 29 Jul. 2010 Page 6 of 19

Who’s smalltalking to me?

Let’s add some methods to the classes:

Subclass1>>methodA

 Transcript show: 'Subclass 1, Method A'; cr.

Subclass2>>methodA

 Transcript show: 'Subclass 2, Method A'; cr.

Subclass2>>methodB

 Transcript show: 'Subclass 2, Method B'; cr.

 super methodA.

Now, we have the following class hierarchy:

Object [many methods]

 Subclass1 #methodA

 Subclass2 #methodA, #methodB

 Subclass3 [no method]

Below is a simplified illustration of the object graph for the classes, compiled methods,

method dictionaries and method dictionary array that are of particular interest.

1

2

CompiledMethod

MethodDictionary

(Method Dict.) Array

Illustration Colors

Class

1

Subclass2>>methodA

Subclass3

Subclass3 MD

class

Subclass2 MD

class

#methodA

#methodB

Subclass1 MD

class

#methodA

class

superClass

Subclass2

superClass

Subclass1

superClass

Object

dictionaryArray

Subclass2>>methodB

class

1 2

1

Object MD

class

...

Subclass1>>methodA

class

2

3

43

dictionaryArray

dictionaryArray

dictionaryArray

Let’s look at an example.

Subclass3 new methodB.

Doc. Revision 17 29 Jul. 2010 Page 7 of 19

Who’s smalltalking to me?

Executing the code above will give the following class stack:

Subclass3(Subclass1)>>methodA

Subclass3(Subclass2)>>methodB

UndefinedObject>>Doit

Transcript will show:

Subclass 2, Method B

Subclass 1, Method A

Interesting here is when #methodB sends #methodA, which version of it is getting

executed. Of course, it should be the one defined on Subclass1, because this is the one

that is super implementation relative to #methodB. The instance of the receiver, in this

case an instance of Subclass3 has no influence on the method lookup. The illustration

below shows the lookup sequences.

1

2

CompiledMethod

MethodDictionary

(Method Dict.) Array

Illustration Colors

Class

1

Subclass2>>methodA

Subclass3

Subclass3 MD

class

Subclass2 MD

class

#methodA

#methodB

Subclass1 MD

class

#methodA

class

superClass

Subclass2

superClass

Subclass1

superClass

Object

dictionaryArray

Subclass2>>methodB

class

1

1

Object MD

class

...

Subclass1>>methodA

class

2

3

432

1

Flags Subclass3 objectMDA

2

3

4
dictionaryArray

dictionaryArray

dictionaryArray

Lookup logic for send of #methodB:

1. Find the method dictionary array.

2. Look for #methodB in the method dictionary for Subclass3. No match.

3. Look for #methodB in the method dictionary for Subclass2. There’s a match.

4. Use the compiled method implementation of #methodB to execute the logic in it.

Doc. Revision 17 29 Jul. 2010 Page 8 of 19

Who’s smalltalking to me?

The next step is to send super methodA. Obviously, since Subclass2>>methodB

(coloured in blue) is doing the send, we must find the Subclass1>>methodA

implementation (coloured in red in the illustration).

2

CompiledMethod

MethodDictionary

(Method Dict.) Array

Illustration Colors

Class

1

Subclass2>>methodA

Subclass3

Subclass3 MD

class

Subclass2 MD

class

#methodA

#methodB

Subclass1 MD

class

#methodA

class

superClass

Subclass2

superClass

Subclass1

superClass

Object

dictionaryArray

Subclass2>>methodB

class

1

1

Object MD

class

...

Subclass1>>methodA

class

2

3

432

Flags Subclass3 objectMDA

dictionaryArray

dictionaryArray

dictionaryArray

1

Doc. Revision 17 29 Jul. 2010 Page 9 of 19

Who’s smalltalking to me?

The illustration below shows the lookup sequence for the super methodA message send:

2

CompiledMethod

MethodDictionary

(Method Dict.) Array

Illustration Colors

Class

1

Subclass2>>methodA

Subclass3

Subclass3 MD

class

Subclass2 MD

class

#methodA

#methodB

Subclass1 MD

class

#methodA

class

superClass

Subclass2

Subclass1

superClass

Object

dictionaryArray

Subclass2>>methodB

1

1

Object MD

class

...

Subclass1>>methodA

class

2

3

432

Flags Subclass3 objectMDA

dictionaryArray

dictionaryArray

dictionaryArray

1

class

superClass

1

2
3

4

1. Since Subclass2>>methodB is making the super send, lookup the class where it’s

defined. The class that defines the compiled method is stored in the class

instance variable of the compiled method.

2. The class (instance of Behavior) that defines #methodB has an instance variable

called superClass. The VM uses it to find the superclass object, in our case

Subclass1.

3. In the super class (Subclass1), the VM uses the dictionaryArray instance

variable to find the method dictionary array for Subclass1. This is where lookup

for #methodA should start.

4. Perform a normal method lookup, as described previously. The example finds an

implementation of #methodA in the first method dictionary.

Instance Specific Behaviour
As the title suggests, it is possible to change the behaviour of a single object. This is

similar to javascript, where the developer on-the-fly defines the behaviour of an object.

To achieve an instance specific behaviour, we must be able ask the VM to perform a

method lookup differently than it would usually do. This is done by manipulating the

method dictionary array hold by an object.

Doc. Revision 17 29 Jul. 2010 Page 10 of 19

Who’s smalltalking to me?

The simplest solution would be to exchange the method dictionary array for an object

with our version, containing the methods we want. This would sound reasonable, but

there are some caveats.

- A complex structure of method dictionaries and method dictionary arrays must be

copied, merely because we want to add one new method. This is expensive, and

(in the old days) would require a lot of memory.

- VSE uses the fact that object has no direct reference to its class. This double

dispatch/lookup comes to an advantage when the class needs to be recompiled.

VSE creates a new class object, and instead of doing #allInstances and

replacing the class on each instance, it just takes ownership of the method

dictionary array of the old class object and replaces the class instance variable

with the new class object. Voilà, all objects are now instance of the new class,

without becomes or other tricks. If instance variables are added or removed, it’s

little trickier.

- The VM might internally do identity check / caching on the method dictionary

array or in other ways expect correct reference.

Luckily for us, the VSE VM has an easy mechanism to add instance specific behaviour.

The method dictionary arrays can be nested. This looks to me like a hack that was

implemented to satisfy the needs required by PARTS, but it works. The illustration below

shows the example from the previous section, simplified to remove unnecessary

information, but this time with added instance specific method.

CompiledMethod

MethodDictionary

(Method Dict.) Array

Illustration Colors

Class

Subclass3 MD

class

#1. (Subclass3 MD) #4. (Object MD)#3. (Subclass1 MD)#2. (Subclass2 MD)

Flags Subclass3 object

Subclass2 MD

class

#methodA

#methodB

Object MD

class

...

Subclass1 MD

class

#methodASubclass2>>methodA

Subclass1>>methodASubclass2>>methodB

#1. (Instance Spec. MD)

#1. (Nested MDA)

Instance Spec. MD

class

#methodA DummyClass>>methodA

MDA

1

2

3
4

A

B

C

nil

D

In this example, we have replaced the method for selector #methodA of the object with

our own implementation. This is done for a single instance of Subclass3, and not for all

instances. Objects added:

A. Method Dictionary Array containing the new instance specific method dictionary at

position 1. and the original method dictionary array at the last position.

B. New Method Dictionary, that is specific to our instance. It contains one entry, our

own implementation of #methodA. The class instance variable is set to nil. It is

allowed to share it between instances.

C. Compiled method with our implementation of #methodA.

D. The original method dictionary array.

Doc. Revision 17 29 Jul. 2010 Page 11 of 19

Who’s smalltalking to me?

Luckily, VSE has helper methods to help us with some of the work, especially for

creating the nesting method dictionary array. We still have to construct the method

dictionary containing our methods. The key methods here are #addBehavior: and

#removeBehavior:. Example:

| md cm |

" Create an empty method dictionary "

md := MethodDictionary new.

" Find the compiled method prototype "

cm := DummyClass compiledMethodAt: #prototype_methodA.

cm isNil ifTrue: [^self].

cm := cm copy.

" Add it to the dictionary "

cm selector: #methodA.

md at: #methodA put: cm.

" Change the instance behavior of <obj> "

obj addBehavior: md.

Once we have the new method dictionary, VSE does the rest of the work. It is possible to

nest several instance specific behaviours (method dictionary arrays) inside each other;

take a look at #addBehavior:. The magic happens inside #methodDictionaryArray:,

which is a primitive call to the VM. This “fixes” the object’s header with the new method

dictionary array. It appears that the VM performs no checking, so the doing something

like obj methodDictionaryArray: true will crash the image. To change class of the

true object to the False class, execute: true methodDictionaryArray: false

methodDictionaryArray, but the image obviously will crash.

For the example obj methodA, where obj in an instance of Subclass3, method lookup is

done as follows (see the illustration on the previous page):

1. Find the method dictionary array for the object; in our case the instance specific

method dictionary array created by the #addBehavior: method.

2. Look for #methodA in the first element in the method dictionary array, i.e. the

instance specific method dictionary we created.

3. Execute the compiled method found in the instance specific method dictionary. In

the example, that’s the DummyClass>>methodA. DummyClass is a class we use

to compile the methods. If the method has no direct references to instance

variables, we can compile it on any class we want.

4. If the method was not found is step 2 and 3, perform a normal lookup in the

original method dictionary array as described previously.

Note: There are no changes to the lookup for super methodA sent in #methodB.

Things instance specific behaviour allows us to do:

- Overwrite an existing method; just add a compile method to the method

dictionary with the selector of an existing method in the hierarchy.

- Add a new method with its own selector, which is new to the hierarchy.

- “Remove a method”. Just add a selector to the method dictionary and nil instead

of a compiled method. E.g. md at: #printOn: put: nil will result in does not

understand if you try to do #printOn:.

Doc. Revision 17 29 Jul. 2010 Page 12 of 19

Who’s smalltalking to me?

Generic Message Send Tracing
Why did I spend so much time writing about message sends and instance specific

behaviour? Obviously, because this is a helpful tool to implement a generic tracing

mechanism. Our requirements are as follows:

- Trace messages sent to an object.

- Enable and disable tracing without recompiling code.

- Optional: Trace parameters.

- Optional: Trace return value.

- Optional: Trace errors that may have occurred.

- Optional: Small impact on performance.

- Flexible

Message Send Tracing
Well, the general idea is simple. Let’s say we want to trace message sends to #methodA.

All we have to do is something like:

methodA

 | result |

 Transcript show: 'Calling #methodA'.

 result := self originalMthodA.

 Transcript show: 'Returned from #methodA with: ', result printString.

 ^result.

Obviously, naïve implementation that writes on the Transcript, but the general idea is

still valid. The drawback however is that we need to recompile a new method and

rename #methodA to #originalMethodA. Also, if done the classical way, the trace will be

active for all instances of the class.

Instance Specific Tracing
As you might have guessed, instance specific behaviour will come to our rescue. All we

need to do is create an instance specific method dictionary. Generalizing the method

from above, we see a pattern:

methodA

 | result |

 MessageTracer traceSendBegin: #methodA.

 result := self originalMethodA.

 MessageTracer traceSendReturn: #methodA result: result.

 ^result.

We can create (pre-compile) a method prototype and simply copy the compiled method

and patch the selector and few literal arrays items to create the instance specific trace

method. Of course we need a version that takes 1 parameter, 2 parameters etc.

We still have an issue with how to call the original method. Two options exist:

1. Add the original compiled method to the instance specific method dictionary with

a unique/special name. In our example, we prefixed the name with #original.

This way the method has been “renamed” for the object instance being traced.

Doc. Revision 17 29 Jul. 2010 Page 13 of 19

Who’s smalltalking to me?

2. Find a way to do super methodA, so it ends calling the original method. This is

what I ended doing, because I didn’t think of the first solution when I

implemented the tracing. Also, the first solution ends up having a messy method

dictionary and needs to generate a lot of dummy method selectors.

Hacking Instance Specific Super Sends
This is where the magic happens. I am not sure the VSE designers intended this to be

done, but as we know, VSE can be tweaked and forced to do a lot of interesting stuff.

The goal is very simple:

- Have an instance of Subclass3.

- Implement a trace method named #methodA on that instance.

- Have the trace method send super methodA, and start the method lookup exactly

in Subclass3, as if the tracing method did not exist.

It is tricky, but possible! All we need to do is trick VSE to do the super method lookup

correctly.

CompiledMethod

MethodDictionary

(Method Dict.) Array

Illustration Colors

Class

Subclass3 MD

class

#1. (Subclass3 MD) #4. (Object MD)#3. (Subclass1 MD)#2. (Subclass2 MD)

Flags Subclass3 object

Subclass2 MD

class

#methodB

Object MD

class

...

Subclass1 MD

class

#methodA

Subclass2>>methodA

#1. (Instance Spec. MD)

#1. (Nested MDA)

Instance Spec. MD

class

#methodA

MDA

#methodA

TraceClass>>methodA

class
DummyTraceClass

Subclass3

superClass

dictionaryArray

3

dictionaryArray

superClass

nil

A

B

1
2

The trick is to create a dummy class object (marked B on the illustration) and change

the class instance variable of the trace compiled method (marked A on the illustration)

to point to that class. The dummy class has the original class as its superclass. In that

way, if TraceClass>>methodA sends super methodA, method lookup happens as follows:

1. Lookup the class of the tracing method. This is the dummy class object we

created.

2. Lookup the superclass of that class. This is the real class the object being traced

is an instance of.

3. Lookup the method dictionary array for that class and proceed with method

lookup as usual.

Note: The dummy class (marked B on the illustration) does very little. The only purpose

we have it is to have the VM lookup the superclass and get reference to the real class.

Doc. Revision 17 29 Jul. 2010 Page 14 of 19

Who’s smalltalking to me?

The dummy class can be created with the following method:

createTracingClass: aClass

 | cls |

 cls := aClass objectShallowCopy.

 self ASSERT: cls ~~ aClass.

 " Unfortunately, too difficult to change that info for meta classes "

 cls isMetaClass ifFalse: [

 cls newNameSymbol: ('Tracing', cls name asString) asSymbol].

 " Now, fix the superclass so method lookup for <super> works ... "

 " NB: They still share the same method dictionary array,

 but we don't care - we'll not use it. "

 cls superclass: aClass.

 ^cls.

As you can see, the dummy class is pretty raw copy of the class where the trace

methods are installed. Only thing changed is the superclass and the name (for now, only

for instance classes).

Trace Methods
Next thing to do is create trace methods for every method that needs to be traced. We

can compile the methods every time, but this leaves traces in the change.log; we don’t

want that. I prefer using method prototypes. This is done by having precompiled

methods on a class somewhere. Those compiled methods are used to create the trace

methods. Example of a prototype:

prototype: a1 w: a2 w: a3 w: a4

 "Auto generated method for tracing - method source may be mismatching"

 SSDefaultMessageTracer isNil ifTrue: [

 ^super original: a1 w: a2 w: a3 w: a4.

] ifFalse: [

 | args result |

 args := Array new: 4.

 args at: 1 put: a1.

 args at: 2 put: a2.

 args at: 3 put: a3.

 args at: 4 put: a4.

 SSDefaultMessageTracer traceSendBegin: self

 selector: #original:w:w:w:

 class: #OriginalMethodClass

 arguments: args

 sender: self sender.

 [

 result := super original: a1 w: a2 w: a3 w: a4.

] on: SSDefaultMessageTracer errorClass do: [:err |

 SSDefaultMessageTracer traceSendError: self

 selector: #original:w:w:w:

 class: #OriginalMethodClass

Doc. Revision 17 29 Jul. 2010 Page 15 of 19

Who’s smalltalking to me?

 arguments: args

 sender: self sender

 error: err.

 err pass.

].

 SSDefaultMessageTracer traceSendReturn: self

 selector: #original:w:w:w:

 class: #OriginalMethodClass

 arguments: args

 sender: self sender

 result: result.

 ^result.

].

This is a compiled method precompiled on a Smalltalk class somewhere; in our case the

class is called SSErrorHandlingTraceFactory (see attached source). This method

prototype is for methods taking four parameters. Obviously, we have a prototype for

methods accepting different number of parameters – currently up to 20. The prototypes

are generated by code, so we can easily create more. Also, we have optimized

prototypes for methods accepting 0, 1, 2 or 3 parameters. For performance reasons,

those do not create the args array, but call directly into optimized versions of the trace

methods.

The method shown above is a prototype. To create a trace method out of it, we must:

1. Find the prototype method accepting the given number of parameters.

2. Create a copy of the prototype.

3. Change the selector (name) of the copy to the selector of the method we want to

trace.

4. Clear the primitive! This is the JIT compiled cached native code. Bad things will

happen if this is not nil’ed.

5. Replace literals in the literal array of the method with the correct values. Those

are shown with bold (hard to see) and underlined in the above example.

a. SSDDefaultMessageTracer is a global with the object responsible for

tracing. In reality, once compiled as a global, the Association holding the

global can be replaced with a private association. This way, we have a

“private” global for each set of trace methods.

b. #original:w:w:w: is the constant symbol used as argument to the

traceSendBegin: and traceSendReturn: methods. It simply indicates which

method we are tracing.

c. #OriginalMethodClass is the name of the class where the method being

traced is originally located. This together with b. can be used to create a

trace string like: Subclass2>>methodB.

d. Finally, original:w:w:w: is the literal symbol that tells what method is

send as part of the super send. We replace that with the selector of the

method being traced.

NB: The functionality described here is mainly implemented in SSTraceFactory>>

installTracingMethod:in:.

Doc. Revision 17 29 Jul. 2010 Page 16 of 19

Who’s smalltalking to me?

Activating Tracing
Now, when we are able to create trace methods, the final step is to activate tracing on

an object. The steps needed here are:

1. Create an empty method dictionary.

2. Decide which methods to trace and create a trace method for each method to be

traced, as described above.

3. Create the dummy trace class, so super sends work correctly (as described

above).

4. Replace the class instance variable of each trace method (not the originals, but

the newly created trace methods) with the dummy trace class. This will make

super sends work.

5. Store the method dictionary somewhere, so we later can deactivate tracing. I’ve

chosen to use a property on the object.

6. Activate instance specific behaviour by calling addBehavior:.

Of course, there are helper classes for this. The UML diagram below shows the classes.

+activateTracingFor:()
+activateTracingFor:upToClass:()
+deactivateTracingFor:()

-current
+tracer

SSTraceFactory

SSDirectTraceFactory SSErrorHandlingTraceFactory

SSMessageTracer

SSSimpleMessageTracer

*

-tracer

1

Tracer interface.
Base class does very little.

Simple tracer.
Formats messages sends,
indents nesting level
and output to the Transcript.

Contains prototypes that call the method
being traced inside an error handler.

Contains prototypes that call the method being traced
without an error handler - for better performance.

Main class here is the base trace factory, with the two concrete classes: one that traces

errors as well as sends, and one that ignores errors.

Tracing for an object is activated by sending:

SSDirectTraceFactory current activateTracingFor: obj upToClass: Subclass2.

If obj is instance of Subclass3 (see previous example), this will create trace methods

for all methods in Subclass2 and Subclass3, but not for methods defined on Object

and Subclass1. In this example, we use the tracer that does not catch and trace errors.

Deactivating tracing is similar:

SSDirectTraceFactory current deactivateTracingFor: obj.

Stopping and starting tracing is simple:

SSDirectTraceFactory current tracer: nil.

SSDirectTraceFactory current tracer: SSSimpleMessageTracer new.

Doc. Revision 17 29 Jul. 2010 Page 17 of 19

Who’s smalltalking to me?

Internals
This section mentions some of the internals of the trace mechanism. The whole source

code is attached.

As mentioned before, two concrete trace classes are implemented: SSDirectTraceFactory

and SSErrorHandlingTraceFactory. The source code for the prototype methods was

created with the #createMethodPrototypeSource: helper method and manually added

to the classes in the browser. The source code for the optimized trace methods was

created by hand.

Currently no caching is implemented for trace methods. Since tracing on two objects of

the same class will need a method dictionary with the same trace methods, it would be

beneficiary to cache the method dictionary – but currently this is not implemented.

Only a simple tracer is implemented (class SSSimpleMessageTracer) that traces

output to the Transcript. It is not super optimized and a little naïve some times. It has

an instance variable named tracing that is sets to true while tracing, so #printString

and other diagnostic messages sent to the object will not end in a never-ending

recursion. It also has an instance variable named level that indicates the nesting

hierarchy, so we can visualize what method calls what method.

Finally, Object implements #ssActivateTracing, #ssActivateTracingUpToClass:

aClass and #ssDeactivateTracing helper methods to activate and deactivate tracing

with the SSDirectTraceFactory class.

Known Limitations
Most of the known limitations are described above. The tracer can trace methods with up

to 20 parameters – I was too lazy to implement more. Tracing output can also be

optimized.

Perhaps the most important limitation is the inability to trace super sends. It is

simply not possible with instance specific behaviour to hook the method lookup for a

super send. This would require (if I understand correctly) altering the method dictionary

/ method dictionary array for a whole class and its super classes. This is too complex,

radical and dangerous. See Super Sends section in the Messages and Message Sends

chapter for more on super sends. In other words, super sends will not appear in the

trace!

Currently, no mechanism is implemented to prevent tracing of trace methods, if the

#activateTracing: methods are called repeatedly.

The methods #vmInterrupt:, #doesNotUnderstand: and #sender will not be traced,

because we use #sender internally, and the two other I find too dangerous to trace at

the moment.

I haven’t tested if the SSErrorHandlingTraceFactory class handles curtailing (return

from blocks) correctly.

Doc. Revision 17 29 Jul. 2010 Page 18 of 19

Who’s smalltalking to me?

Conclusion
Well, this is a document about the message send and method lookup mechanism in VSE,

and how it can be used to trace message sends. As we can see, VSE is relatively flexible

and the VM is relatively generic, not exclusively bound to the Smalltalk semantics.

More experiments with VM are needed. Most of the knowledge in this document comes

from hard work, common sense and experimenting! Good way to find out when the VM

uses what is to put garbage in an instance variable that you expect the VM to access. If

it crashes, usually with a GPF, then the VM needs it. Example is the super sends; put nil

in the class instance variable of a compiled method, and it works fine, until it does a

super send. Put a bogus class in the same place and you will confuse the VM. Put a class

from another class hierarchy, and the super send will look up a method in completely

different class hierarchy and end executing completely different method than one would

expect.

Some unexplored options are left:

Mixins
Mixins (http://en.wikipedia.org/wiki/Mixin) are something I’ve really wanted in

Smalltalk. They are like interfaces plus implementation. Some naïve examples:

do: aBlock

 self implementedByConcreteClass.

everySecondDo: aBlock

 | even |

 even := false.

 self do: [:each |

 even ifTtrue: [aBlock value: each].

 even := even not.

].

withWaitAndStatusDo: aBlock

 CursorManager execute changeFor: [

 self do: [:each |

 StatusIndicator current text:

 'Processing: ', each printString, ' ...'.

 aBlock value: each.

].

].

It would be nice to add this methods to all classes (collections) that implement #do:.

From what I understand, the VM creates objects the following way:

1. Looks up the size of the object in the class (structure instance variable) and

reserves memory space on the heap.

2. Sets the objects flags (not interesting for us).

3. Copies to value of the dictionaryArray instance variable of the class object to

the header of the new object. This is like setting the class of the new object. From

what I can guess, the VM blindly copies this object reference and doesn’t use it

http://en.wikipedia.org/wiki/Mixin

Doc. Revision 17 29 Jul. 2010 Page 19 of 19

Who’s smalltalking to me?

internally. This opens the possibility to add “instance specific behaviour” to all

new objects of a class! Cool!

With this knowledge, it should be possible to create a mixin. Having every instance have

the mixed behaviour described above would require us to patch the dictionaryArray

instance variable of classes. We need to have the development tools access the “correct”

information, and the runtime use the compiled/combined method dictionary array for

method lookup. One must experiment what order the VM looks up methods in the nested

method dictionary arrays. What if we add the “instance specific methods” after the

standard class methods? How to handle super sends in mixins? How to handle methods

that need to be implemented by the concrete classes? Why the class instance variable of

an instance specific method dictionary does needs to be nil? Is this needed for the

#class message to work correctly, or due to instance mutation during class shape

changes and similar?

Anyway, combining the method dictionary of a mixin class with the method dictionary of

a concrete class may be the way to implement mixins in VSE. More research is needed!

Break Points
Another pain in the “behind” in VSE is the need to put self halt so often. May be using

similar techniques like the tracing and mixins described above can help is implement

break points. Those of course cannot be put arbitrary inside a method, but only on entry

or exit. This should be enough in many cases.

Proxy Objects / Generic Tracing
Often tracing all messages to an object is needed, or some more tricky proxy operations

are needed. One way people have done that is create a class outside the Object

hierarchy and have it implement #doesNotUnderstand: and have some logic in there.

The downside with this approach is that we need a proxy object to encapsulate the real

object. What if the real object already exists? It’s not possible (or easily possible) to

replace the real object with the proxy object.

An idea here is; what if we change the class of the real object to behave like a proxy

object, without need to change reference to it or losing its state. To do this:

1. Create a method dictionary array and a single method dictionary.

2. Add the required #doesNotUnderstand: and #vmInterrupt: methods to it and

needed methods to access instance state and variables, like #basicAt: and

#basicAt:put:.

3. Set the class instance variable correctly of the method dictionary.

4. Replace the whole method dictionary array of the object with the new method

dictionary array using the #methodDictionaryArray: method.

The object now behaves as if it has the behaviour of a class defined outside the object

hierarchy.

As you can see, possibilities are almost endless ... enjoy!

Todor ;-)

	Introduction
	Messages and Message Sends
	Definitions
	VSE Objects
	Object’s Class
	Sending Messages
	Super Sends
	Instance Specific Behaviour

	Generic Message Send Tracing
	Message Send Tracing
	Instance Specific Tracing
	Hacking Instance Specific Super Sends
	Trace Methods
	Activating Tracing
	Internals
	Known Limitations

	Conclusion
	Mixins
	Break Points
	Proxy Objects / Generic Tracing

