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The original Visual Smalltalk dialect by Digitalk has survived 
ten years of proclaimed discontinuity. Paradoxically, the 
languishing commercial interest in this legitimate successor of 
the Smalltalk lore had a positive consequence: it protected the 
product from sophistication. After stripping out the over 
dimensioned Envy-like Enterprise development environment, 
and forgetting the PARTS that nobody seemed to use in real 
projects, we are left with a simple, powerful, compact and 
fast Smalltalk implementation. Even though Visual Smalltalk 
does certainly have a prominent history, it is neither perfect 
nor finished. As it is usually the case with every corpus of 
fruitful intellectual work, there are still many interesting 
details waiting to be completed. To begin with, there is one 
crucial problem in Visual Smalltalk: it has a bunch of hidden 
classes and methods that nobody has disclosed so far. This 
document is an attempt to repair that historical mistake. It 
explains how to recuperate all hidden classes and how to 
retrieve all missing Smalltalk source code. 

Bytecodes and mnemonics 
It is broadly accepted that Smalltalk is much more than a programming language. 
However, when seen as a programming language Smalltalk shares many of the nice 
properties of the low level ones. More precisely, the transformation that maps the source 
code of any method to its compiled form can be easily inverted. In fact most Smalltalk 
dialects provide compiler and decompiler tools as Smalltalk objects programmed in 
themselves. 

Squeak programmers are already familiar with the mnemonic representation of compiled 
methods. The system has a show bytecodes command that prints any compiled method in 
a human readable format. While less documented, Visual Smalltalk also provides such a 
command. The expression 

CompiledMethod byteCodeReaderClass displayMethod: aCompiledMethod on: aStream 

prints out a mnemonic representation of aCompiledMethod on aStream. Let's see an 
example from the SUnit framework. The evaluation of the expression above on the 
TestCase>>#assert: method outputs the following piece of code: 
TestCase>>#assert: 
 type: 0 
 blocks: 0 
 args: 1 
 stk temps: 0 
 literals: 
  'Assertion failed' 
  signalFailure: 
   1   <50>  LoadArgument1 
   2   <1B>  TestJumpTrue 8 
   5   <A3>  PushLiteral1 



   6   <0A>  LoadSelf 
   7   <E2>  SendSelector1  #signalFailure: 
   8   <49>  ReturnSelf 

The code above is a textual representation of the compiled method TestCase>>#assert:. 
The header accounts for additional information as the number of temporaries and the 
contents of the literal frame. Below there is a mnemonic representation of the bytecodes 
that make up the compiled method. 

The stack-based interpreter of the virtual-machine code follows some few simple rules. 
For instance, the fragment 
   5   <A3>  PushLiteral1 
   6   <0A>  LoadSelf 
   7   <E2>  SendSelector1  #signalFailure: 

stands for the Smalltalk message: 
   self signalFailure: 'Assertion failed' 

As this fragment reveals, the bytecode interpreter expects the receiver of the message in 
the topmost position of the stack. All arguments, if any, are also searched in the stack, 
from the receiver and down. 

Code optimization is also easily revealed. Branching messages like ifTrue: and its variants 
are not compiled as message sends but inlined into the bytecodes. Inlining avoids the use 
of superfluous syntactic blocks; it also works around the message send mechanism for the 
sake of performance. For example, the fragment 
   1   <50>  LoadArgument1 
   2   <1B>  TestJumpTrue 8 

stands for the Smalltalk expression: 
   <argument> ifFalse: 

Note that the names of the formal arguments are not stored in the compiled method. 
Similarly, temporary names are also forgotten and can only be found in the Smalltalk 
source code.  

Now, if after this short and straightforward analysis we put all together, we obtain: 
TestCase>>assert: argument 

argument ifFalse: [self signalFailure: 'Assertion failed']. 
^self 

Eliminating the superfluous return of the receiver: 
TestCase>>assert: argument 

argument ifFalse: [self signalFailure: 'Assertion failed']. 

Finally, an elementary type inference analysis reveals that argument must be kind of 
Boolean (search for implementors of ifFalse:). Consequently we can rewrite the source 
code above as: 
TestCase>>assert: aBoolean 

aBoolean ifFalse: [self signalFailure: 'Assertion failed'] 



This simple example shows two things. First it shows how any compiled method can be 
printed out in human readable form regardless the availability of its Smalltalk source 
code. Second, it shows how simple and straightforward is the translation of the 
mnemonic language to the Smalltalk language. The only non-trivial part of the overall 
process of rewriting the Smalltalk source code is that of type inference. It is by inferring 
types that we can name variables meaningfully. Otherwise, the expressiveness of 
aBoolean would be lost behind the rather impersonal argument. 

Hidden Globals 
Assume you have a global variable; say a Class or a Pool Dictionary. If you compile a 
method that uses that global and afterwards you remove that global from the Smalltalk 
dictionary, then the compiled method will still work the same as before 
Smalltalk at: #Foo put: 'foo'. 

Object>>#foo 
 ^Foo 

testFoo 
 self assert: Object new foo = 'foo'. 
 Smalltalk removeKey: #Foo. 
 self assert: Object new foo = 'foo' 

The compiled method remains the same 
Object>>foo 
 type: 0 
 blocks: 0 
 args: 0 
 stk temps: 0 
 literals: 
  Foo ==> 'foo' 
   1   <02>  NoFrameProlog 
   2   <5A>  LoadAssoc1 
   3   <48>  Return 

What changes after removing the global is that if we now try to recompile the original 
source code, the compilation will fail because this time there is no known binding for the 
name 'Foo'. In other words, before recovering the source code from the compiled method, 
we must define the missing global. Note that we don't need to figure out its value, 'foo' in 
the example, as the global's value is saved in the literal frame of any compiled method 
that uses the global. 

For instance, if the missing global is a complex Pool Dictionary, then there is no need to 
rebuild its many keys and values. That very same dictionary is stored in the literal frame 
of the compiled method. We are done by including the name of the global in the Smalltalk 
dictionary.  



In Visual Smalltalk there is just one hidden Pool Dictionary. Actually there are two of 
them, but just one is used and the other one is ignored. To find them out we can go a step 
further with the interesting expression we used to print compiled methods in human 
readable format. As we have seen above, the object that displays those pretty assembly-
like scripts is 
CompiledMethod byteCodeReaderClass. 

By inspecting that expression we discover some more interesting things. First, as the 
selector suggest, the expression retrieves a class. Second, the class name is blank. Third, 
the class definition refers to two Pool Dictionaries XCByteCodes and XCMaxLast that are not 
declared as globals. Fourth, even when the superclass is Object, the class is not included in 
the subclasses instance variable of the Object class. 

There are many useful things we could do here. We can recover the first Pool Dictionary 
from the literal frame of any of the compiled method that uses it. For instance, the 
method shortSendFor:on: stores XCByteCodes in the first slot of its literal frame. Thus, we 
can define the global with the following script 
| class method | 
method := class compiledMethodAt: #shortSendFor:on:. 
Smalltalk at: #XCByteCodes put: (method at: 1) value 

We can now include the hidden class into the Smalltalk dictionary. From the message we 
have been taking advantage of we can deduce even one more thing. An appropriate name 
for the hidden class would be ByteCodeReader. Had we considered 'bytecode' as a noun 
and not as a composite word, we would have named the class BytecodeReader instead. 
However, at this stage we are not trying to improve or change the original programming 
style, but to recover it from whatever is available. Think of yourself as an archeologist. 

To name the class we can proceed as follows 
| class | 
class := CompiledMethod byteCodeReaderClass. 
class instVarAt: 4 put: #ByteCodeReader. 
Smalltalk at: class symbol put: class 

To complete this step we need to link the class in the hierarchy. As we observed above, 
its superclass does not include the class in its subclasses array. Hence 
| class | 
class := ByteCodeReader. 
class superclass subclasses: (class superclass subclasses copyWith: class) 

Note that there is no need to repeat the code above at the MetaClass level as the 
implementation of MetaClass>>#subclasses: is reportedly obsolete. 

Constant Pool Names 
At this point ByteCodeReader behaves as any regular class. You can now browse it and 
start recovering the source code of its methods as explained above. As we will see, this is 
just the beginning and there are quite a few other hidden classes that require a similar 
treatment.  



Sooner or later, however, you will discover that some few methods cannot be recovered 
exactly. In other words, for some few exceptional cases, no source code will reproduce 
the original compiled method. The reason is that in Visual Smalltalk bindings to pool 
dictionary entries can be compiled in two different ways. If the Pool Dictionary is 
declared as 'constant,' then the compiler does not store the associations used in the 
method, but the values. 

To see how this works let's take a look at the following method 
CompilerInterface>>#bindingClassForPoolNamed: aString 
 "return the class of binding used to represent elements 
 of the pool named by the argument" 
 |cp| 
 cp := Smalltalk at: #ConstantPoolNames ifAbsent: [IdentityDictionary new]. 
 (cp includes: aString asSymbol) 
  ifTrue: [^self compiler constantAssociationBindingClass] 
  ifFalse: [^self compiler associationBindingClass]  

Depending on the membership to the ConstantPoolNames dictionary, a different kind of 
binding is assigned to the pool's associations. From our reconstruction it turns out that the 
XCByteCodes pool dictionary had been declared as 'constant' when the missing source code 
was originally compiled. That declaration was subsequently revoked, but the methods 
compiled that way still have the original bytecodes. 

In consequence, in order to recover the original source code we need to include that pool 
name into the ConstantPoolNames global. Here is how 
 Smalltalk 
  at: #ConstantPoolNames 
  put: (ConstantPoolNames copyWith: #XCByteCodes) 

Other hidden classes 
The discussion about constant pools has other nice consequences. It shows us the way to 
reach the compiler plus two binding classes. These objects can be examined by inspecting 
the following expressions 
| interface compiler constant assoc | 
interface := CompilerInterface new. 
compiler := interface compiler. 
constant := compiler constantAssociationBindingClass. 
assoc := compiler associationBindingClass 

Once again, we get hidden classes. They all have blank names, they are not declared as 
globals and they are not included in the subclasses array of their superclasses. The compiler 
class is also referenced from the method 
CompilerInterface>>#defaultCompilerClass 

Consequently, we can use all this information to name the hidden classes as: 
DefaultCompiler, ConstantAssociationBinding and AssociationBinding. This time, however, we 
will take the more systematic approach described below. 



Disclosing all hidden classes 
At this point one starts wondering how many hidden classes are there in the image. There 
is a simple way to find that out 
| hidden | 
hidden := (MetaClass allInstances select: [:m | m name first = $ ]) 
 collect: [:m | m instanceClass] 

The answer is that there are 53 hidden classes in Visual Smalltalk. So far, we have 
revealed four of them: ByteCodeReader, DefaultCompiler, ConstantAssociationBinding and 
AssociationBinding. Just 4 out of 53 might be a bit disappointing. However, the information 
we now have is more fruitful than that. For instance, among the hidden classes it should 
be one Byte Code Writer or Encoder. Also, the DefaultCompiler is not a subclass of Object 
but a subclass of an abstract class that we could rename as SmalltalkCompiler (we have 
chosen this name and not Compiler because there is already a global named that way in 
the image and we must avoid colliding with any existing name). Similarly, the superclass 
of AssociationBinding is an abstract class that could be renamed to Binding. Other kinds of 
bindings should correspond to other of its subclasses, as InstanceVarBinding, 
TemporaryBinding, and the like. 

If there is a Compiler, it should be a Parser. If there is a Parser it should be a Scanner. Also, 
other hidden classes should correspond to all possible parse nodes. Given the number of 
different kinds of parse nodes and the variety of bindings used in Smalltalk, there should 
be no much classes left in the hidden collection. 

Now that we have an approximate idea of the classes we are looking for we can take the 
more systematic approach claimed above. First let's observe that all hidden classes have 
blank names. Hence, we must distinguish them from the number of blank spaces that 
make up their names. As we discover their original names we can replace the blanks with 
meaningful strings. We can use the collection of hidden classes computed before to find 
out the minimum and maximum number of spaces a blank class name can have. 
| hidden min max | 
hidden := (MetaClass allInstances select: [:m | m name first = $ ]) 
 collect: [:m | m instanceClass]. 
min := hidden first symbol size. 
min := hidden inject: min into: [:r :class | r min: class symbol size]. 
max := hidden inject: 0 into: [:r :class | r max: class symbol size]. 
^min to: max 

The evaluation of the script shows that blank class names can have between 1 and 56 
spaces. Since there are 53 hidden classes we deduce that, except in 3 cases, all blank 
symbols made up of 1 to 56 spaces correspond to the 53 hidden classes. 

We can now create the NameDiscloser class as follows: 
Object subclass: #NameDiscloser 
  instanceVariableNames:  
    ' hidden ' 
  classVariableNames: '' 
  poolDictionaries: '' 



In the class side the #nameArray method answers the mapping between the number of 
white spaces of the hidden class and the original name of the class. We initialize that 
mapping with blank symbols of the appropriate lengths. At index i we put the symbol  
((String new: i) atAllPut: $ ; yourself) asSymbol. 

Afterwards, as our investigation goes on and we happen to discover more class names, 
we can modify the entries of the array accordingly. 

In the instance side of the class we provide four main services for the sake of 
convenience. 
NameDiscloser>>#initialize 
 hidden := (MetaClass allInstances select: [:m | m name first = $ ]) 
  collect: [:m | m instanceClass] 

This method initializes the hidden instance variable as shown above. 
NameDiscloser>>#nameHidden 
 | names n name | 
 names := self class nameArray. 
 hidden do: [:class |  
  n := class name size. 
  name := names at: n. 
  Smalltalk privateRemoveKey: class symbol ifAbsent: []. 
  class instVarAt: 4 put: name asSymbol. 
  Smalltalk at: class symbol put: class] 

The method above uses the symbols in the nameArray to rename the hidden classes. Note 
that our low level implementation breaks the encapsulation of the classes being renamed 
and that of the SystemDictionary. The removal of the association at the old class symbol 
avoids the side effect of having two globals pointing to the same class. That allows us to 
send the nameHidden messages as many times as required, forgetting at the same time 
obsolete global names. 

As discussed before, we can also declare #XCByteCodes as a global name, and include it in 
the ConstantPoolNames array. 
NameDiscloser>>#markConstantXCByteCodes 
 | class method | 
 class := CompiledMethod byteCodeReaderClass. 
 method := class compiledMethodAt: #shortSendFor:on:. 
 Smalltalk at: #XCByteCodes ifAbsentPut: [(method at: 1) value]. 
 (ConstantPoolNames includes: #XCByteCodes) ifFalse: [ 
  Smalltalk 
   at: #ConstantPoolNames 
   put: (ConstantPoolNames copyWith: #XCByteCodes)] 

Finally we fix the hierarchy of classes by adding the hidden classes to the subclasses list 
of their superclasses: 



NameDiscloser>>#linkClassHierarchy 
 | sbclasses orphans1 orphans2 | 
 hidden do: [:cls |  
  sbclasses := hidden select: [:c | c superclass == cls]. 
  cls subclasses isNil ifTrue: [cls subclasses: sbclasses]]. 
 orphans1 := hidden 
  select: [:cls | cls superclass == Object 
   and: [(Object subclasses includes: cls) not]]. 
 Object subclasses: Object subclasses , orphans1. 
 orphans2 := hidden 
  select: [:cls | (cls superclass subclasses includes: cls) not]. 
 orphans2 
  do: [:cls | cls superclass 
   subclasses: (cls superclass subclasses copyWith: cls)] 

At this point one would expect to see a bunch of blank named classes in the class 
hierarchy browser. However, there is still one more switch that prevents that from 
happening. The method  
Behavior>>#withAllSubclasses 
  "Answer an OrderedCollection of the receiver and 
  all of its subclasses in hierarchical order." 
 ^self withAllSubclasses: false 

filters out all classes whose names start with a white space. Hence, it must be changed to: 
Behavior>>#withAllSubclasses 
  "Answer an OrderedCollection of the receiver and 
  all of its subclasses in hierarchical order." 
 ^self withAllSubclasses: true 

otherwise classes with blank names will not be included in browsers and will not be 
searched for class references, senders or implementors which are crucial for the type 
inference we are interested in. 

Recovering more hidden class names 
As we have seen above, many of the blank named classes can be meaningfully renamed 
based on the messages that retrieve them. Some others however, have to be renamed after 
a behavioral analysis. It is always a good idea to resolve first the simplest classes. Now 
that senders and implementors do work, we could write a simple script to recover all 
selectors of all hidden classes that end with the string 'Class'. If we include that as a 
service in our NameDiscloser class we could program it as 
NameDiscloser>>#classRevealingMethods  
 answer := OrderedCollection new. 
 hidden do: [:class | 
  class selectors do: [:each | 
   ('*Class' sunitMatch: each) 
    ifTrue: [answer add: (class compiledMethod at: each)]]. 
 ^answer 

This technique allows deducing 25 original names from the hidden classes. As showed 
before, the class name is the capitalization of the main part of the selector. After 
obtaining that information, we can improve our NameDiscloser>>#nameArray method by 
replacing the 25 blank names with the original ones.  



As we find out more original names, we rerun the nameHidden method of the 
NameDiscloser. Iterating this way, the intention of the remaining hidden classes is 
increasingly made more apparent. Finally we end up with the complete mapping of 
names.  

Recovering the Smalltalk Source Code 
Once all hidden classes are renamed, the work that remains is the translation of the source 
code from the mnemonic form to the Smalltalk language. A simple inspection shows how 
many methods we are talking about: 
CompiledMethod allInstances 
 inject: 0 
 into: [:r :cm | r + (cm source isNil ifTrue: [1] ifFalse: [0])] 

A better estimation should take into account only current versions. Actually the result 
depends on the particular image were it is evaluated. In general, however, the number 
will be something about 1720 methods. Even though there is a considerable amount of 
work to do, it is achievable as a pastime. One could think of two strategies. The first one 
is to write a decompiler. The second is to translate each of the methods one by one. The 
problem with the first approach is that the decompiler would depend on code that is in 
mnemonic format. The other drawback is that automatically decompiled code uses 
generic arguments and temporary names of the form arg1, arg2, t1, t2, etc.; which are not 
in the spirit of Smalltalk. There is finally a legal issue. The use of a decompiler tool could 
be interpreted as a reverse engineering practice. Unlike reverse engineering, manual 
translation from one human readable language into another one, enhanced with 
meaningful names derived from labor-intensive type inference cannot be qualified neither 
as reverse (it is a simple translation) nor as engineering (it is the work of an artisan); 
mostly, when both languages are provided in the base code of a discontinued product 
whose license has been legitimately acquired.  
The approach followed in the present work was the labor-intensive one. This was 
possible because most translations were straightforward, and just a very small quantity 
out of the 1700 or so methods was a bit tedious to work with. 

SUnit Tests 
After recompiling the new methods, the old ones are not referenced anymore. However, 
since the old compiled methods belong in a Smalltalk link library, they are not garbage 
collected.  

Having unreferenced methods in the image is indeed a side effect that we should 
overcome. However, before getting rid of the duplications we can take advantage of them 
for testing purposes. 

For each new method, we can recover its original counterpart and then check that they are 
equivalent. The only differences between the two versions should be in the names of the 
globals. If an original method referenced a hidden class or pool dictionary, then there will 
be a difference in the literal frame with the new method. In fact the difference should be 
only in the key part of the literal association, as the key holds the name. Note that no 
differences should be observed in the byteCodeArray instance variables.  



Original compiled methods can be recovered with 
| originalMethods | 
originalMethods := CompiledMethod allInstances select: [:cm | cm source isNil] 

The main fragment of the test is in the following method 
assertOn: aCompiledMethod 
 | current | 
 current := self currentVersionFor: aCompiledMethod. 
 self assert: current source notNil. 
 self assert: current byteCodeArray = aCompiledMethod byteCodeArray 

Note that the current version for a compiled method is 
 aCompiledMethod classField compiledMethodAt: aCompiledMethod selector 

As stated above, we could also compare the literal frames provided we take into account 
the renaming of the blank global names. 
 self assert: current literals size = aCompiledMethod literals size. 
 current literals with: aCompiledMethod literals do: [:a :b | 
  self assert: a class = b class. 
  a isAssociation 
   ifTrue: [self assert: a value = b value] 
   ifFalse: [self assert: a = b]]. 

In doing this, we discovered that ByteCodeReader>>#sendPseudoFor:on: has a typo. The 
author of the original method wrote botAnd: instead of bitAnd:. 

Besides the correctness of the new Smalltalk sources we can test the correctness of the 
classes whose names have been recovered. 
testNoBlankNames 
 allClasses do: [:class | self assert: class name trimBlanks size > 0] 

The variable allClasses is initialized as: 
 allClasses := MetaClass allInstances collect: [:meta | meta instanceClass] 

We can also test the hierarchy links 
testClassLinks 
 allClasses 
  do: [:class | class superclass isNil 
   or: [class superclass subclasses includes: class]] 

Auto Mark Dirty 
Database applications in general and GemStone applications in particular usually require 
the markDirty message to be sent whenever an instance variable of a persistent object is 
assigned in the client image. The automatic inclusion of the markDirty message is a 
feature that can be also enabled in Visual Smalltalk. This undocumented option is made 
apparent when translating the source code of AssignmentNode>>#compute or 
AssignmentNode>>#evaluate. The activation of the automatic mark dirty option is achieved 
by sending the message 
 addOption: #sendDirty with: <markDirty selector> 

to the CompilerInterface. Both methods are similar; here is one of them:  



AssignmentNode>>#evaluate 
 | dirty | 
 self setIcStart. 
 dirty := false. 
 expression evaluate. 
 assignees do: [:v |  
  dirty ifFalse: [dirty := v isInstanceVariable]. 
  v storeRetain]. 
 (dirty and: [self compiler environment includesOption: #sendDirty]) ifTrue: [ 
  self encoder pushResult. 
  self encoder loadSelf. 
  self encoder send: (self compiler environment optionValue: #sendDirty). 
  self encoder popR]. 
 self setIcEnd 

As shown above, the #sendDirty option automatically inserts in the compiled method the 
bytecodes that send the <markDirty selector> to self whenever any of its instance variables 
is assigned. Note also that the inserted message is sent with the object being assigned as 
the argument of the <markDirty selector>. 

Rebuilding the Development Library 
Once the tests have been written and run there is no reason to have duplicated compiled 
methods in the image. After recompiling the methods from their recovered Smalltalk 
code we should save the libraries where the original compiled methods belong in. 

One of those libraries, unfortunately, cannot be rebuilt as easily as a regular one. As it 
turns out, the development library is the one that contains the 53 hidden classes. 
However, in order to rebuild that library we must first retrieve all its information. It is 
precisely here where we encounter the first obstacle. The expression 
SmalltalkLibraryReporter for: SmalltalkLibraryBinder devLibName 

signals a DNU error because the information available for the library is not complete. 

Fortunately, now that we have all the Smalltalk sources it is easier to find another way to 
retrieve the information required to rebuild the library. After taking a look at 
SmalltalkLibraryBinder>>#bind, it becomes apparent that before rejecting binding the 
development library a second time, the binder reads from the file all the information we 
are looking for. 
NameDiscloser class>>#devLibInfo 
 | fname binder metaMeta space info | 
 fname := SmalltalkLibraryBinder devLibName. 
 binder := SmalltalkLibraryBinder currentClass new. 
 binder skipPostBindCleanUp: true. 
 binder file: fname. 
 [ 
  binder open. 
  binder checkVersion. 
  metaMeta := binder getMetaMeta. 
  space := binder readSpace. 
  space := binder addObjects: space externals: metaMeta. 
  space associationsDo: [:assoc | binder objectStore metaInfo add: assoc]. 
  binder resolveExternals. 



  binder getObjects] 
  ensure: [binder close]. 
 ^binder 

Once the information of the development library is captured, the binder is closed without 
completing the binding.  

The method above enables us to rebuild the library. Given that this time we are providing 
the complete Smalltalk sources and non-blank names for the hidden classes, the new 
library will have the .sml file we want. There is, however, one more obstacle to deal with. 
The information retrieved from the original file does not include the hidden classes. In 
consequence we must add the 53 hidden classes by hand, before building the new version 
of the library. 

The remaining source code belongs principally to two additional libraries: VOSW31 and 
VSLB31. Since these two libraries can be easily rebuilt, after including all other recovered 
methods in the appropriate library, we are done. 

Conclusions 
The caducity of Visual Smalltalk was planned almost ten years ago. However, because 
living objects have an innate tendency to survive and change, Smalltalk systems keep 
subsisting and evolving as long as some smalltalker holds at least one non weak reference 
to them. Squeak, for instance, germinated inside an unreleased implementation of 
Smalltalk-80 for the Mac which had been abandoned fifteen years before.  

It is our hope that this work contributes to the rescue of a brilliant offspring of the 
Smalltalk wisdom. The reader should note that the inherent simplicity of its design made 
it feasible disclosing the veiled parts of Visual Smalltalk. Sophistication rather than 
simplicity is what condemns systems to their ruin; the future should not lead us beyond 
the limits of personal understanding. 
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