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This document provides a broad description of the intermediate 
language that sits between regular Smalltalk source code and 
natively assembled routines. Unlike usual programming 
languages, this one is read-only in the sense that the 
programmer can look at it in mnemonic form while its 
codification is left to the Smalltalk compiler. The value of 
understanding Smalltalk bytecodes is better appreciated by those 
interested in deepening their understanding of topics normally 
beyond the scope of standard programming: processes and 
activation frames. However focused on the specific set of 
bytecodes of Digitalk virtual machines, the concepts and 
techniques covered here can be applied to other Smalltalk 
dialects. 

Compilation 

The Smalltalk compiler transforms source code into instances of the class CompiledMethod. 

In this process several classes collaborate to produce the desired result: CompilerInterface, 

SmalltalkCompiler, Scanner, ParseNode and Binding hierarchies, and Encoder. 

The CompilerInterface creates the SmalltalkCompiler instance, takes care of compilation 

options and exception handlers (compilation errors). The SmalltalkCompiler parses the source 

code creating a Scanner that transforms the source code String into a sequence of tokens. 

These tokens are then analyzed according to the Smalltalk grammar (syntax). The result of 

the analysis is expressed as a MethodNode, the root of a nested structure of ParseNodes 

including objects that represent arguments, message sends, variables, assignments, blocks, 

etc. 

Once the parse tree has been successfully created, the objects collaborate to generate the 

byteCodeArray of the CompiledMethod. The SmalltakCompiler creates and holds an Encoder that 

emits sequences of binary encoded bytecodes. Bytecodes may have a size of one or more 

bytes; they represent ParseNodes as parameterized assembly-like instructions. The 

byteCodeArray is a ByteArray that holds the sequence of binary encoded bytecodes. 

 

between: min and: max 
 ^(min <= self) 
  and: [self <= max] 

MethodNode (between:and:) 
 ReturnNode 
  MessageNode (and:) 
   MessageNode (<=) 
    …. 

#[50 46 29 1C 0A 00 0A 3B 01 48] 

Source code Parse tree Bytecode array 

parsing encoding 
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Native code 

Bytecodes are an intermediate representation of computable code. In order to make this 

code run on the host CPU, the Virtual Machine (VM) translates them into native code. The 

part of the VM that nativizes bytecodes is called the Dynamic or JIT (Just in Time) compiler. 

Even though a comprehensive description of the Dynamic compiler is beyond the scope of 

this document, its conceptualization is simple: native code is dynamically generated by the 

VM from method bytecodes. 

Because the receiver of a message is only known when the message is about to be sent, the 

binding between the message selector and the actual method may potentially change at 

every invocation. The lookup, therefore, may result in a method whose native form is not 

available. When that is the case, the JIT has to nativize the method on the fly. For the sake 

of performance the VM maintains a code cache that holds methods that have already been 

nativized. The class VirtualMachineExe has services that allow the Smalltalk programmer to 

monitor the state of the code cache or change its size. 

Bytecodes 

Bytecodes are binary specifications of instructions. Every bytecode consists of one or more 

bytes. The first byte determines the opcode. In some cases, the first byte also includes a 

parameter codified in the last few bits. Additional bytes, if present, contain parameters 

required by the opcode. A complete list of bytecodes can be examined by inspecting the 

PoolDictionary named XCByteCodes. 

The class ByteCodeReader uses this dictionary to recover the structure of the byteCodeArray 

and provide human-readable printing services (see ByteCodReader >> #displayMethod: and its 

variants). 

For instance, the method Magnitude >> #between:and: has the following bytecodes: 

Bytecode (hex) Mnemonic 1st argument 2nd argument 

50 LoadArgument1   

46 29 SendBinaryPseudo <= self 

1C 0A 00 TestJumpFalse 10 0 

0A LoadSelf   

3B 01 SendBinaryLessThanEqual Arg 1 

48 Return   

Note that the binary encoding of arguments is not restricted to octets. For instance, 

SendBinaryPseudo and SendBinaryLessThanEqual encode their two arguments in bit fields of 

the same byte while TestJumpFalse takes two bytes to encode the jump length. The 

argument of LoadArgument1 is implicitly encoded in the opcode. 

Most bytecodes are grouped in families according to their function. Bytecodes in the same 

family share the same opcode and use their first byte to specify an implicit argument. The 

last bytecode of the family assigns an additional byte to specify an argument that exceeds 

the max implicit value. 
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For example, the LoadArgument family is: 

Bytecode (hex) Mnemonic Implicit argument Argument 

50 LoadArgument1 1  

51 LoadArgument2 2  

52 LoadArgument3 3  

53 LoadArgument4 4  

54 xx LoadArgumentN  xx (>= 5) 

The Encoder uses the method #putCode:max:range: to generate bytecodes for the opcode 

specified in the first argument. The range argument is the index parameter. If the range 

argument does not surpass the max, it is encoded in the first byte by subtracting max –
 range + 1 from the opcode. If not, a two-byte bytecode is generated instead, with the 

opcode in the first byte and the range argument in the second. 

In the example above, the opcode associated to LoadArgument is 16r54 and the max is 4. 

Therefore, LoadArgument2 is generated by sending putCode: 16r54 max: 4 range: 2, which 

emits the single byte bytecode 16r54 – (4 – 2 + 1) = 16r51. 

Storage 

Native code accesses data allocated in different places: 

a) Execution Stack 

b) CPU Registers 

c) Environment arrays 

d) Compiled method’s literal frame 

e) Receiver’s instance variables 

Execution Stack 

The Encoder honors the calling convention that consists in passing method arguments in the 

stack. To support this convention the Encoder emits the appropriate push bytecodes before 

emitting send ones. 

Nativized methods also follow the same convention. The JIT compiler translates method 

bytecodes into machine code that pushes arguments on the execution stack. The receiver of 

the message is loaded in a CPU register as explained below. 

Besides passing parameters by pushing them into the stack, temporary variables are also 

allocated in the stack. For instance, the method 

String >> #\ aString 
 | slash | 
 slash := FileSystemPath directorySeparator. 
 ^(self endsWith: slash) 
  ifTrue: [self , aString] 
  ifFalse: [self , slash, aString] 
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has one temporary named slash. Because of this, the Encoder generates bytecodes to access 

it in a specific stack location. For instance, the assignment is encoded as 

 <C3> StoreTemporary1 

which stores the object held in the R register (see below) into the first (and only) stack-

allocated temporary variable. 

CPU Registers 

The Encoder explicitly refers to register R, which is mapped to a CPU register. As 

documented in [1] this register must always hold the receiver of the message that is about to 

be sent. When the message returns, register R holds the result. 

Methods are always activated with register R loaded with their receiver (self). Because of 

this, a method that begins by sending a message to the receiver has no need to load R with 

self. For instance, the method 

Symbol >> #arity 
 | last | 
 last:= self last. 
 last = $: ifTrue: [^self occurrencesOf: $:]. 
 (last isAlphaNumeric or: [last == $_]) ifFalse: [^1]. 
 ^0 

has an encoding that begins with: 

 <E2> SendSelector1 #last 

because it assumes that the caller of the nativized method will initialize R to self. 

Another register known to the Encoder is the argument register A. This register is used by 

the following bytecodes: 

Bytecode (hex) Mnemonic Description 

09 MoveRegToArg A ← R 

20 SendBinaryRRPlus R ← R + A 

23 SendBinaryRRMinus R ← R – A 

26 SendBinaryRRMultiply R ← R * A 

28 SendBinaryRRDivide R ← R / A 

2B SendBinaryRREqual R ← R = A 

2F SendBinaryRRQuotient R ← R // A 

32 SendBinaryRRNotEqual R ← R ~= A 

37 SendBinaryRRLessThan R ← R < A 

3A SendBinaryRRGreaterThan R ← R > A 

Environment arrays 

Attention must be paid not to confuse Smalltalk temporaries with stack temporaries. Stack 

temporaries are momentarily allocated in the execution stack. These variables are local to 

the native routine. A Smalltalk temporary is the familiar local variable declared between 
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pipes ‘|’. However, not every method or block temporary can be allocated in the stack. The 

reason is that method temporaries accessed from block closures have to survive as long as 

the block does. Since the execution stack vanishes as soon as the method returns, chances 

are that a block survives the method that defined it (for example, a method returning a 

sortBlock that uses a method temporary to define the order criterion). Therefore, local 

variables used inside a block cannot be allocated in the stack and must be preserved as long 

as the block is alive. As an example, consider the following method: 

Collection >> #select: selectBlock thenCollect: collectBlock 
 | answer | 
 answer := self species new. 
 self do: [:element | 
  (selectBlock evaluateWith: element) 
   ifTrue: [answer add: (collectBlock evaluateWith: element)]]. 
 ^answer 

This method defines the local (temporary) variable answer. However, since this variable is 

accessed inside the block closure that is provided as an argument to the #do: message, it 

cannot be allocated in the stack. In fact, if we evaluate 

(Collection compiledMethodAt: #select:thenDo:) tempCount, the value we get is 0. The local 

variable answer is instead allocated in a Smalltalk Array known as the method’s 

environment. The block closure holds a reference to that array at position 4, and can be 

accessed with the method BlockClosure >> #methodEnvironment. 

The same thing happens when a block temporary is used by nested blocks. In general, 

environment arrays are just the collection of all local variables that are used from within 

inner blocks. 

Literal Frame 

Many bytecodes reference their parameters indirectly by their position in the method’s 

literal frame. For instance, the SendSelector pattern includes the following bytecodes: 

Bytecode (hex) Mnemonic Implicit argument Argument 

E2..F6 SendSelector1..21 1..21  

F7 xx SendSelectorN  xx (>= 22) 

In all cases, an argument k, implicit or not, specifies the actual selector to be sent as the one 

stored in slot n – k + 1, where n is the size of the literal frame (i.e., indexes to selectors are in 

reverse order). 

The literal frame can also contain associations binding names with shared
1
 objects. These 

objects are also referenced in bytecodes by their position (or index). 

Bytecode (hex) Mnemonic Implicit argument Argument 

5A..61 LoadAssoc1..8 1..8  

62 xx LoadAssocN  xx (>= 9) 

                                                 
1
 Global and class variables 
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63..67 PushAssoc1..5 1..5  

68 xx PushAssocN  xx (x >= 6) 

69 xx StoreAssocN  xx (x >= 1) 

For instance, if a method sends a message to a class, its literal frame will have an 

association whose key is the class symbol and its value is the class.
2
  

The literal frame also holds other objects created at compilation time from the source code 

such as, e.g., ‘string’, $c, #symbol, #[0 1 255], #(0 1 255), 3.141592, 1073741824 (LargeIntegers3), 

and their combinations like #(#[0 1 255] $c ‘string’), etc. The following table lists the 

bytecodes that operate with entries stored in the literal frame. Arguments of these bytecodes 

are indexes within literal frame.  

Bytecode (hex) Mnemonic Implicit argument Argument 

9E..A1 LoadLiteral1..4 1..4  

A2 xx LoadLiteralN  xx (>= 5) 

A3..AD PushLiteral1..11 1..11  

AE xx PushLiteralN  xx (>= 12) 

In addition, for every block in the method there is one entry in the literal frame that holds 

its template. Block templates are instances of the class BlockClosure, not tied to any method, 

and serve the purpose of describing the block that will eventually be created when the 

method is activated.
4
 

Instance variables 

There are three bytecode patterns to access instance variables. The first pattern loads the 

appropriate instance variable into register R. The second pattern pushes the instance 

variable on the stack. The third one copies the contents of R on the instance variable. 

Bytecode (hex) Mnemonic Implicit argument Argument 

7F..8A LoadInstance1..12 1..12  

8B xx LoadInstanceN  xx (>= 13) 

8C..94 PushInstance1..9 1..9  

95 xx PushInstanceN  xx (>= 10) 

96 StoreInstance1..7 1..7  

9D xx StoreInstanceN  xx (>= 8) 

The pattern LoadInstance is used to send a message to the corresponding instance variable.  

                                                 
2
 Note however that no restriction exists on the contents of the literal frame. Its slots can contain any object 

and this possibility is sometimes exploited to implement non-standard features, see e.g. [2]. 
3
 SmallIntegers are codified inside bytecodes rather than in the literal frame. 

4
 The method BlockClosure class >> #initStandardTemplates initializes the most common block templates used by 

compiled methods. Note however, that many compiled methods use non-standard block templates. 
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Instance variables are also referenced by bytecodes associated to some binary selectors that 

use them as arguments
5
. The following is a list of such binary selectors: 

BitAnd Equal Divide 

BitOr GreaterThan Minus 

BitShift GreaterThanEqual Multiply 

BitXor Identical Plus 

Or LessThan Quotient 

 LessThanEqual Remainder 

 NotEqual  

Stack Allocation 

As we have seen, the stack plays a central role in the Smalltalk execution model. 

Arguments are passed by pushing them on the stack, and the stack is also used for 

temporary storage. A good understanding of the execution model involves a good 

understanding of how the stack is allocated. 

Traditionally, the Smalltalk-80 specification used the stack to push not only message 

arguments but also the receiver and the answer. As explained in [1], modern VMs use a 

register for the receiver and, sometimes, another register for the answer. What did not 

change, however, is that the called method has the responsibility to remove the arguments 

from the stack before returning. 

In this section we will see how the Encoder supports the execution model by looking more 

closely at how bytecodes make use of registers and the stack. 

The expression 

 CompiledMethod byteCodeReaderClass displayMethod: aCompiledMethod on: aStream 

prints in mnemonic form the byteCodeArray of aCompiledMethod on aStream. For instance, 

the method 

Magnitude >> #between: min and: max 
 ^(min <= self) and: [self <= max] 

is printed as: 

Magnitude>>between:and: 
 type: 0 
 blocks: 0 
 args: 2 
 stk temps: 0 
 1 <50> LoadArgument1 
 2 <46> SendBinaryPseudo <= self 
 4 <1C> TestJumpFalse 10 
 7 <0A> LoadSelf 
 8 <3B> SendBinaryLessThanEqual Arg, 2 

                                                 
5
 These bytecodes belong to the SendBinary family and they can also reference arguments of binary type listed 

in Encoder subclasses first binaryTypes 
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10 <48> Return 

It is interesting to note how easy it is to make sense of the mnemonic form: 

Index Bytecode (hex) Mnemonic 1st argument 

1 50 LoadArgument1 R ← arg1 (min) 

2 46 29 SendBinaryPseudo <= self R ← R <= self 

4 1C 1A 00 TestJumpFalse if R == false goto 10 

7 0A LoadSelf R ← self 

8 3B 01 SendBinaryLessThanEqual Arg,2 R ← R <= arg2 (max) 

10 48 Return ^R 

With practice it is very easy to translate the mnemonic representation to the Smalltalk 

syntax. This example also shows how #and: is inlined rather than sent as a message. Other 

examples of inlined selectors are ifTrue:, ifFalse:, whileTrue:, etc. 

What this example does not show is the utilization of the stack for storage local to the 

method. Let’s consider instead: 

Character >> #between: min and: max 
 ^(min asciiValue <= asciiInteger) and: [asciiInteger <= max asciiValue] 

The mnemonic representation of this method is as follows: 

Character>>between:and: 
 type: 0 
 blocks: 0 
 args: 2 
 stk temps: 0 
 literals: 
 asciiValue 
 1 <50> LoadArgument1 
 2 <E2> SendSelector1 #asciiValue 
 3 <3B> SendBinaryLessThanEqual Inst, 1 
 5 <1C> TestJumpFalse 15 
 8 <8C> PushInstance1 
 9 <51> LoadArgument2 
10 <E2> SendSelector1 #asciiValue 
11 <09> MoveRegToArg 
12 <07> PopR 
13 <3B> SendBinaryLessThanEqual A-reg, 16 
15 <48> Return 

The interesting thing here is the PushInstance1 bytecode in line 8. This instruction is used to 

preserve in the stack the value of the first (and sole) instance variable asciiInteger. This ivar 

                                                 
6
 In this case the number 1 in A-reg, 1 is superfluous because there is only one register A. The mnemonic 

displays it anyway because the same routine is used for numbered arguments like instance variables, 

temporaries, literals, etc. 
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is recovered in line 12 with bytecode PopR that moves it from the stack to register R, where 

it is required as the receiver of the binary message <=. 

Note that the ivar is preserved to prevent a possible side effect of the #asciiValue message. 

The semantic of asciiInteger <= max asciiValue requires the value held by asciiInteger to be 

“protected” of any change that the message #asciiValue could potentially inflict on it. In this 

way the programmer can intuitively think of Smalltalk expressions as being evaluated from 

left to right. 

This example shows that even though the method defines no stack temporary, the execution 

will dynamically allocate an implicit stack temporary between lines 8 and 12. We can 

illustrate this by adding a new column on the left showing the depth of the stack after
7
 

executing the bytecode in that line. 

Character>>between:and: 
 type: 0 
 blocks: 0 
 args: 2 
 stk temps: 0 
 literals: 
 asciiValue 
(0)  1 <50> LoadArgument1 
(0)  2 <E2> SendSelector1 #asciiValue 
(0)  3 <3B> SendBinaryLessThanEqual Inst, 1 
(0)  5 <1C> TestJumpFalse 15 
(1)  8 <8C> PushInstance1 
(1)  9 <51> LoadArgument2 
(1) 10 <E2> SendSelector1 #asciiValue 
(1) 11 <09> MoveRegToArg 
(0) 12 <07> PopR 
(0) 13 <3B> SendBinaryLessThanEqual A-reg, 1 
(0) 15 <48> Return 

As we can see there are two kinds of stack allocations: static and dynamic ones. Static 

allocations make room for method arguments and stack temporaries. In addition, dynamic 

allocations are required to preserve objects from possible side effects inflicted by 

intermediate messages that compute arguments.
8
 

Note that pushing arguments according to the calling convention is not considered as a 

stack allocation in the context of this discussion. The point here is to show that the stack 

might, at some point in time, hold more temporaries than the number of stack temporaries 

of the method as specified by CompiledMethod >> #tempCount (which equals the stk temps: 
header section of the mnemonic display). 

                                                 
7
 The fact that the depth shown on the left corresponds to the value obtained once the bytecode has been 

executed is admittedly counterintuitive. We choose this format simply because it was simpler to derive from 

the original one.  
8
 Static temporaries are allocated for as long as the method is in the stack. Dynamic ones are allocated and de-

allocated during the execution of the method. In both cases, however, stack temporaries are accessible 

through bytecodes of the LoadTemporary family. 
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Example 

Another example where an implicit stack variable is dynamically allocated to preserve its 

value is the following: 

method 
 self unary1 keyword: self unary2 

A naïve encoding would look like this: 

1   <E3>     SendSelector2     #unary2 
2   <06>     PushR 
3   <0A>     LoadSelf 
4   <E2>     SendSelector1     #unary1 
5   <E4>     SendSelector3     #keyword: 

However, after some analysis it is easy to understand that this encoding could give puzzling 

results (i.e., results not expected by the Smalltalk programmer who is used to left-to-right 

evaluation). 

Since this encoding sends #unary2 before #unary1, confusion would raise if #unary2 had 

some side effect on the result of #unary1. For instance, #unary1 answers an instance variable, 

while #unary2 changes its value. Before the presence of such side effect, the Smalltalk 

programmer expects #unary2 to be sent after #unary1 (in our example, the original ivar to be 

the receiver of #keyword:). 

The correct encoding (which is the actual one) avoids this problem by preserving the result 

of #unary1 dynamically as an implicit stack temporary: 

(0)  1   <E2>  SendSelector1  #unary1 
(1)  2   <06>  PushR 
(1)  3   <0A>  LoadSelf 
(1)  4   <E3>  SendSelector2  #unary2 
(2)  5   <06>  PushR 
(2)  6   <AF>  LoadTemporary1 
(1)  7   <E4>  SendSelector3  #keyword: 
(0)  8   <03>  DropTos1 
(0)  9   <49>  ReturnSelf 

As before, we have included the stack depth after executing each bytecode. In line 2: PushR 

dynamically creates the implicit temporary that saves the result of #unary1. This value is 

recovered in line 6: LoadTemporary1, which sets register R to that value for using it as the 

receiver of #keyword:. Note that the bytecode in line 6 treats the access to the dynamic 

allocation as a regular stack temporary. The stack is balanced back to 0 in line 8: DropTos1, 

a bytecode that simply discards the top of the stack. 

The reader should note that the purpose of line 5: PushR is different from that of line 2 as 

the second push is required by the calling convention to pass the argument to the message 

#keyword:. 



DIGITALK BYTECODES. PAGE 11 

Stack Tracing 

The tracing of the stack depth explained above can be automatically computed for any 

method. The idea is to keep track of bytecodes that push on or pop from the stack. There 

are some few special cases to consider: 

Explicit Push 

There are several bytecode patterns that explicitly push objects on the stack: 

Bytecode (hex) Mnemonic Depth change 

06 PushR +1 

0B PushSelf +1 

0F PushTrue +1 

11 PushFalse +1 

13 PushSmallInteger0 +1 

15 PushSmallInteger1 +1 

17 PushSmallInteger2 +1 

19 PushSmallInteger +1 

4F 03 LoadBlockContextN +1 

55..59 PushArgument1..N +1 

63..68 PushAssoc1..N +1 

72..77 PushContextTemporary1..N +1 

8C..95 PushInstance1..N +1 

A3..AE PushLiteral1..N +1 

BC..C2 PushTemporary1..N +1 

FC 05..08 PushIndirect (IndirectEscape) +1 

Explicit Pop 

The following bytecode patterns explicitly pop objects from the stack: 

Bytecode (hex) Mnemonic Depth change 

03 DropTos1 -1 

04 DropTos2 -2 

05 b DropTosN -b 

07 PopR -1 

CB..E0 SendSpecial1..22 -arity 

E1 SendSuperSpecialN -arity 

E2..F7 SendSelector1..N -arity 

F8..F9 SendSuper1..N -arity 

In this table arity stands for the number of arguments of the implied selector. Patterns 

SendSelector and SendSuper refer to selectors found in the literal frame. Their implicit or 

explicit argument determines the reverse index in that array, 1 being the last one. The 
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special selectors are those answered by the method ByteCodeReader class >> 
#specialSelectors. An implementation of Symbol >> #arity was included above in this 

document. 

Note that the table above does not include any bytecodes of the SendBinary family. There 

are two reasons for this. First, this family includes the RR subfamily that operated directly 

with registers R and A, as already explained in this document. Secondly, the remaining 

bytecodes of the family use the binary encoding within the bytecode, rather than the stack, 

to define the argument of the binary operation. 

Block closures 

The third group that deserves special attention is that of block patterns. These bytecodes 

mark the beginning and end of block closures. Bytecodes inside a block do not alter the 

depth of the current stack because their execution will happen when the block (rather than 

the home method) is activated. Therefore, inside the block, the stack depth must be reset to 

0, and the original value reestablished as soon as the block ends. For instance: 

method 
 self unary1 do: [self unary2] 

has the following encoding: 

(0)  1 <4F>  PushBlockclosure 1, 9 
(0)  6 <0A>  LoadSelf 
(0)  7 <E2>  SendSelector1 #unary2 
(1)  8 <4A>  ReturnFallOutBlock 
(1)  9 <0A>  LoadSelf 
(1) 10 <E3>  SendSelector2 #unary1 
(0) 11 <D3>  SendSpecial9 #do: 
(0) 12 <49>  ReturnSelf 

In the leftmost column we have annotated all changes to the stack depth as before. The 

point here is that lines 1 to 8, corresponding to the block [self unary2], reset the depth to 0 

and recover it as soon as the block exits (ReturnFallOutBlock). Even though PushBlockclosure 

increments the method’s stack depth in 1, its effect is not seen inside the block. After 

executing line 8: ReturnFallOutBlock, the method’s stack recovers its depth. 

Note also that the PushBlockclosure bytecode includes as an argument the index to the first 

bytecode following the block (9 in this case). By using this parameter it is easy to know 

when the original depth counter must be recovered. 
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Stack Frames 

Digitalk VMs allocate the current Smalltalk process directly in the CPU execution stack 

(a.k.a the native stack). The class Process is a subclass of OrderedCollection that adds several 

instance variables whose meaning is beyond the scope of this document. Entries (a.k.a. 

slots) of this collection are objects
9
 consecutively allocated in the (native) stack. These slots 

are logically grouped in data structures known as (process) frames.  

 

As shown in the illustration the execution stack is divided into consecutive frames, which 

are data structures linking the activation of a method with that of its caller and callee. Stack 

frames are described in [1]. The structure of stack frames in a Digitalk VM can be 

understood by browsing the class Process.  

The size of every frame depends on both static and dynamic information. Statically defined 

slots depend on the number of arguments and the number of stack temporaries. All other 

slots are common to all frames: receiver (self), environment, return offset, etc. Dynamically 

defined slots are those that depend on the number of implicit stack temporaries as explained 

above. 

Even though a complete description of stack frames is beyond the scope of this document, 

the following table shows the structure of a typical method frame: 

Name Description Static? 

Implicit N Dynamically allocated temporary N (if any present) No 

… … No 

Implicit 1 Dynamically allocated temporary 1 (if any present) No 

Temporary N Statically allocated stack temporary N (if any present) Yes 

…   

Temporary 1 Statically allocated stack temporary 1 (if any present) Yes 

                                                 
9
 Actually object pointers (a.k.a. oops). These are pointers to Smalltalk objects, with the exception of 

SmallIntegers which are codified inside their oop. 

Native stack memory 

frame 0 

frame 1 

frame 2 

frame 3 

frame 4 

frame 5 

overlapping 
data structure 

stack pointer 

Process 

link to 
caller 
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Environment Array, Block, nil or missing Yes 

Home Array, Block, nil or missing Yes 

CompiledMethod The compiled method Yes 

Receiver self Yes 

Frame pointer Distance in bytes to the caller frame (=0 if no caller) No
10

 

Return offset Caller’s nativized program counter  Yes 

Argument 1 Argument 1 (if any present) Yes 

…   

Argument N Argument N (if any present) Yes 

As we have seen in the preceding paragraphs, the number of dynamically allocated stack 

slots Implicit1..ImplicitN can be determined by tracing the stack depth in the mnemonic 

representation of the bytecode array. In the next section we show how this issue can be 

addressed. 

Dynamically Allocated Temporary Count 

An interesting problem that we will consider now is how to compute the number of 

dynamically allocated temporaries in a frame.
11

 As we have seen these temporaries are 

implicit in the sense that they are not declared by the programmer. Instead, stack 

temporaries are generated by bytecodes that push on the stack objects that need to be 

preserved until they can be used as receivers or arguments of forthcoming messages. 

As we have already seen, by scanning the bytecodes it is possible to trace all changes in the 

stack depth. The idea of such tracing consists in keeping track of pushes and pops. It also 

requires saving the current depth counter when entering a block, and recovering it once the 

block is left. Inside blocks the depth counter has to be reset to 0.12 

Once the stack tracing is available, we can determine the number of implicit temporaries as 

the current stack depth computed by the tracing. All we need to know is the index of the 

current bytecode, i.e., the index in the byteCodeArray of the bytecode corresponding to the 

frame under analysis. Let’s call that index the frame instruction counter. 

The frame itself does not know its instruction counter. However, its callee keeps in its 

return offset field, the native program counter where the callee must return. This value is 

the offset within the caller of the next native assembly instruction. 

                                                 
10

 Since the size of every frame depends on both static and dynamic allocations, the link from one frame to its 

callee cannot be considered static. 
11

 Of course, instances of Process know this information. However, the purpose of this section is to show how 

to deduce it in order to create new processes or modify existing ones in a way that is valid and coherent with 

native code. 
12 Since blocks can be nested, this can be accomplished by using a stack-like structure. When scanning a 

bytecode that enters a block, the current depth can be pushed and a new one started with 0. The old value can 

be recovered by popping it from the stacked structure. All of this can be easily implemented in a subclass of 

ByteCodeReader. 
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Therefore, all we need is a mapping relating the bytecode instruction counter to the native 

program counter. Fortunately, <primitve 14> provides exactly that mapping. The method 

CompiledMethod >> #inlineTable 
 ^CompilationInfo new compiledMethod: self; inlineInfo 

answers an array whose values are native program counters (actually offsets), and its 

indexes are instruction counters in the byteCodeArray.
13

 

 

Actual machine code might differ from the one in the illustration, which is irrelevant for 

this discussion. Similarly, the translation from bytecodes to machine code is not, in general, 

one-to-one because most bytecodes spawn to several assembler instructions. What is 

important here is how the inlineTable can be used to associate to every frame with its 

instruction counter, from there with the stack depth change that corresponds to it, and 

finally with the number of implicit temporaries in the frame. 

Conclusions 

The study of bytecodes and the intermediate language they define are crucial to understand 

the underlying architecture of the Smalltalk computational model. These notes are nothing 

but an attempt to fill documentation gaps and enable deeper analyses of method activations 

and Smalltalk processes.  
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13 CompilationInfo is the only subclass of CompilationResult. Therefore it can be referenced as CompilationResult 
subclasses first. 

ic virtual code 
1 PushSmallInteger0 
2 PushArgument1 
4 LoadSelf 
7 SendSelector1 
 

pc nativized code 
0 push ebp 
1 mov ebp, esp 
3 push 1 
5 push [ebp + 8] 
8 mov eax, esi 
10 call 12345678 
15 mov esp, ebp 
17 pop ebp 
18 retn 4 

test: arg 
 ^self with: 0 with: arg 

Source code Bytecodes 

Machine code inlineTable 


