
A moribund1 Smalltalk still alive and kicking: The APIS VisualSmalltalk IDE2

Thomas Brey, Heiko Wagner

Thomas.Brey@apis.de; Heiko.Wagner@apis.de

APIS Informationstechnologien GmbH
Im Haslet 42, D-93086 Wörth a.d. Donau, Germany

Abstract: After we briefly described the history of Visual Smalltalk (VS), we show how some proprietary
rather complex derivates of VS emerged over the years. Despite the fact that the last official major release
was in 1995, there are still successful products actively developed with VS. We show in detail the current
status of VS at the APIS company, focussing on usability improvements of the IDE as well as on the
proprietary Java Interface, which was developed independently from JNIPort and JavaConnect, featuring a
high level of automation and integration (fully automated import of jar-files, browse and compile Java in
VS). We show that even a smaller company can succeed in keeping a 13 year old Smalltalk IDE up-to-date.

1 History and Background

A System called Methods introduced by Digitalk in 1984 is usually taken to be the first
commercial Smalltalk available and it was precursor of Digitalk’s more popular. Smalltalk/V, first
published in 1986 for DOS-based OSs, later for OS/2 and Windows.

Fig. 1: Digitalk Methods 1.1 from 1985 (screenshot by Aaron Reichov3)

Until 1995, Smalltalk/V was the main competitor to the ParcPlace (PP) Smalltalk Systems,
ObjectWorks and later VisualWorks. Compared to PP Systems, Smalltalk/V was not platform-
independent but deeply integrated into and optimized for the supported platforms. It targeted the
expanding PC market and compared to PP, it’s pricing was moderate and especially the 16-bit
Version 2.0 for Windows released in 1992 (later given away for free as Smalltalk/Express),
1 James Robertson from Cincom once applied this term to VS
2 Submitted to ESUG 2008
3 http://bitquabit.com/~revaaron/old/

mailto:Heiko.Wagner@apis.de
mailto:Thomas.Brey@apis.de

ESUG 2008 A moribund Smalltalk still alive and kicking: The APIS VisualSmalltalk IDE

became widely used. With Version 3.0, the product was renamed to Visual Smalltalk; it was
Windows95 certified and released in 1995, shortly before PP and Digitalk merged to ParcPlace
Digitalk (PPD). In 1996 PPD released Version 3.1 available with numerous add-ons as
VisualSmalltalk Enterprise (VSE). One was the PARTS Workbench for visual programming,
which had some impact on IBM’s VisualAge, another was Team/V for team programming and
version control, whereas ENVY, another widely used team and version control environment
available for nearly all Smalltalk Versions, was no longer supported in VSE. Although it was a
declared goal of PPD (renamed 1997 to ObjectShare), to unify the VisualWorks and
VisualSmalltalk product lines, the company completely failed and was dissolved in 1999.
Whereas complete IP Rights on VW were sold to Cincom, Cincom aquired only the rights to sell
and maintain existing versions of VSE, all other rights on VSE were sold to a company called
Seagull (which was not really interested in VSE but only in tools developed with it). This deal and
the resulting “license deadlock” actually killed official development of VSE and although Cincom
published the maintenance release 3.2 aka VSE2000 in 1999 containing some fixes but no new
features, the last patch for the VM published by Cincom dates back to 2002 and meanwhile
support for VSE is officially discontinued.
But since VS once was a rather successful product, several companies decided in the early 90’s to
realize their projects and products with VS. Some of these products established a strong market
position and are still actively developed in VS(E). Since active development of VS(E) itself
stopped at the end of the decade, a community of engaged VSE-Developers emerged which is still
active on the VSEW mailing list sharing bug fixes, enhancements and customer components.
Most notable contributions to the community4 are the “VSE Goodies” provided by A. Reimondo5

and Tec46, both still maintain their download sites. Whereas these goodies were designed for
general usage, many companies adapted VS to their needs over the time leading to rather
complex, proprietary derivates of VS(E). Without doubt, a major contributing factor making these
systems possible is the fact that Smalltalk is an open system where you can modify and extend
nearly everything; except some primitives, even core classes like String etc. can, in contrast to
Java e.g., be modified. The price for this flexibility enabling even small companies to keep their
VS up to date, is the higher effort to share custom modifications and components between
different VS derivates, because they are usually based on different language cores and windowing
frameworks. But a still harder problem the remaining VS(E) community is continuously faced
with, are changes in the architecture and APIs of the underlying Windows platform. Often, these
changes would require adaption of the virtual machine (VM), which is not possible for the
ordinary VS(E) developer. Although Seagull never showed any interest to support the VS(E)
community (e.g. open source the VM), some companies individually succeeded in buying the
source code and the right to modify the VM from Seagull; this in turn made the necessary
modifications of the VM possible and thus helped to keep the community alive (not by sharing the
VM, but the knowledge to patch it). Lesser-Software7 took another road out of nowhere: instead
of modifying the VM of VS, they developed an enhanced but byte-code compatible VM from
scratch.
APIS started developing risk and quality management software based on VS and ENVY in 1992.
Since ENVY was used for team programming and version control, APIS never upgraded to VSE
but still uses VS 3.0 from 1995 (see Fig. 2).
From the very beginning, usability and an intelligent user interface was a major target and the
visualization techniques developed at APIS are still a distinguishing feature compared to
competitors and helped to establish a market-leading position. This in turn made it possible for

4 I want to note some persons from the VSEW mailing list, who contributed valuable help through ongoing
discussions: Henrik Hoyer, Manfred Möbus, Todor Todorov, Dan Poon, Frank Lesser, our collegue
Andreas Rosenberg and last but least Thomas Muhr who maintains the list.
5 http://www.smalltalking.net/Goodies/VisualSmalltalk/index.htm
6 http://www.tec4.ca/Smalltalk/
7 www.lesser-software.com

2

ESUG 2008 A moribund Smalltalk still alive and kicking: The APIS VisualSmalltalk IDE

APIS to expand continuously, so APIS can not only afford to enhance the IDE besides developing
the products, but also succeeded in buying the source code for the VM and implementing some
major improvements to the VM like Unicode capability. In section 2 we briefly describe
enhancements incorporated in the products, section 3 deals with enhancements of the IDE and in
section 4 we briefly illustrate our Java Interface, which allows one to use Java classes and
components within Smalltalk thus also extending the limited capabilities of the old original VS.

Fig. 2: Digitalk VisualSmalltalk 3.0 from 1995

2 APIS Frameworks and Enhancements

As already noted, the sophisticated UI of APIS products had a major impact on the success of
these products. We pick out two examples, which were developed very early: APIS TreeView and
APIS TableVision. As shown in Fig. 3, the TreeView control not only supports multi-colored text
for a single tree item; it also supports multiple icons for a single item, where each icon can trigger
a different action when clicked.

3

ESUG 2008 A moribund Smalltalk still alive and kicking: The APIS VisualSmalltalk IDE

Fig. 3: APIS TreeView Control

APIS TableVision is a framework for rendering arbitrary complex objects in arbitrary nested
tables:

Fig. 4: APIS TableVision

Since APIS products are used worldwide, localization became an important goal. Whereas a
framework supporting multiple languages for the data as well as for the UI was already
implemented at the beginning, the Base System of VS (core classes, windowing system and VM)
did not support Unicode, making it impossible to render e.g. Chinese or Russian correctly. In an
ongoing effort taking 3 years, APIS finally succeeded in the middle of 2007 in implementing full
Unicode support for the Base System through a very transparent framework8.

8 partly inspired by previous work of Frank Lesser

4

ESUG 2008 A moribund Smalltalk still alive and kicking: The APIS VisualSmalltalk IDE

Keeping in mind, that APIS does not use VSE but VS, which lacks some essential components,
we conclude this section by simply listing some more enhancements which were developed over
the years:

- a proprietary, object-oriented database
- a framework for parsing/generating SGML,XML and HTML
- TCP/IP and UDP based networking support, SMTP Client etc.
- Support for various native widgets, MAPI, ODBC, the windows registry etc.

3 Development Support

Although ENVY already extended the plain VS IDE with several Browsers, e.g. an
ApplicationsBrowser similar to the PackageBrowser of VSE (a bundle of classes and methods
what is usually called a Package is called an Application in ENVY), the original VS/ENVY IDE
(see Fig. 2) lacks essential features of modern IDEs like Autocompletion, Code Highlighting and
Formatting, Refactoring Support, intelligent Find&Replace of code fragments. To make work
more comfortable, APIS was always engaged in integrating such features into the IDE.
First, an early version of the Refactoring Browser was ported from VisualAge and continuously
improved. Then the SUnit Framework was implemented with visual support through our UnitTest
Browser. Finally, an enhanced ClassesBrowser was developed from scratch. Since our IDE now
contains several different browsers, we currently work on generic frameworks which allow us to
use new features in any browser. One example is our IDEToolbar framework, which enables us to
easily attach toolbars for basic functions to any window of the IDE (see Fig. 5). Most toolbars
contain state-of-the-art controls for navigating back and forwards in the browsing history and for
searching Text or Classes, where the Comboboxes (e.g. for Class Search) are able to filter their
contents (up to 25000 entries) in real-time during typing. Another example for a generic concept
which can be applied to all browsers is our CodePane, a Text control optimized for rendering
Smalltalk code and providing not only basic support like Autocompletion, Highlighting and
Formatting but also more sophisticated features like visual feedback on problems found in the
code, assistance to resolve them or direct in-place renaming (e.g. instead of doing a find&replace
over all occurrences of a variable in a dialog box, you simply edit the variable occurrence in the
declaration and all occurrences in the text are edited concurrent and automatically). All features of
the CodePane are based on a general framework for Code Processing, which emerged through
continuously extending the RBParser component from the RefactoringBrowser (ver. 3.0), but
independent form development in other Smalltalk Systems (e.g. RBHighlighter in VisualWorks).
Goal of our CodeProcessing Framework is to support the developer as much as possible and to
detect possible runtime errors and other potential problems already at the time a method is edited
or saved. This, of course, is hard when dealing with an untyped language like Smalltalk. We
therefore work on a Type Subsystem, which similar to Strongtalk, tries on the one hand to infer
type information from assignment and return expression found in a message chain and on the
other hand supports (optional) type declaration for return values, arguments and variables.
Information collected this way can then be used to improve Autocompletion or to detect “type
errors”, which would throw a MessageNotUnderstood error at runtime.

5

ESUG 2008 A moribund Smalltalk still alive and kicking: The APIS VisualSmalltalk IDE

Fig. 5: APIS VisualSmalltalk IDE today

4 Java Integration

Since the beginning of 2007, we develop a framework for using Java within Smalltalk. At the
time we started, we did not know of the two similar projects JNIPort and JavaConnect. All we
knew was the prior work of A. Reimondo on the same topic, but his implementation is rather old
did not install in our environment, so we quickly decided to build our Java Interface from scratch.

Low Level Interfacing with the Java Virtual Machine using JNI

The foundation of the interaction between the Java VM and Smalltalk is Java Native Interface
(JNI). It allows invoking Java functionality from native code. It has originally been designed to
allow interaction with the programming language C/C++, but the Smalltalk VM was enhanced to
take use JNI as well, thus allowing Smalltalk to interact with Java objects as they just were
regular Smalltalk objects. Enhancements of the Smalltalk VM include functionality to directly call
Java VM code using function pointers, as well as adding support for 64bit integer types and IEEE
754 floating point formats not originally available in the Smalltalk VM.

Support for Java Types

The full set of Java types is supported, this covers any Java object and all basic types like byte,
char, int, long, float and double. Also arrays, or nested arrays, containing Java objects or basic
Java types are possible. Unicode support has been added to the Smalltalk platform to take
advantage of internationalisation (i18n) facilities in Java. Special support is also provided for the
Java BufferedImage class. Instances of this class can be converted to a Smalltalk Bitmap instance
and vice versa. This gives access to a wide range of Java functionality like Java Image IO, Java
Advanced Imaging and Java 2D.

6

ESUG 2008 A moribund Smalltalk still alive and kicking: The APIS VisualSmalltalk IDE

High Level Tool Support

In addition to the low level support, a set of tools was created to make using any Java library a
simple process. By providing the possibility to automatically generate all needed Smalltalk
wrapper code from arbitrary any Java library by simply importing a set of JAR files (see Fig. 6),
so the complexity is completely hidden and the Smalltalk developer can focus on writing just
Smalltalk code. Access to the entire Java SE 6.0 runtime has been provided by this way, thus
providing several thousand classes containing several ten thousands of methods. The Smalltalk
IDE class browsers have been augmented to provide capability of displaying the source code
provided by the Java libraries (see Fig. 7). It is even possible to compile a Java class directly from
within the Smalltalk IDE, thus providing the tightest integration of Smalltalk and Java.

Fig. 6: Java Import Browser

7

ESUG 2008 A moribund Smalltalk still alive and kicking: The APIS VisualSmalltalk IDE

Fig. 7: Browse+Compile Java Code in a Smalltalk Browser

Integration of Java UI Components using AWT native interface

Besides the integration on the code level there is also a complete integration of Java user interface
into Smalltalk. Java user interface components like Swing components can be used in any
Smalltalk GUI just like ordinary Smalltalk components. A bridge has been created to allow
Smalltalk programmers to register event handlers for these hosted Java components just like they
do for ordinary Smalltalk components, so Java components integrate seamlessly into any
Smalltalk user interface.

8

	A moribund1 Smalltalk still alive and kicking: The APIS VisualSmalltalk IDE2

